Evaluate: 3√2162197.
On prime factorisation of the numbers individually, we get,
216=2×2×2––––––––––×3×3×3––––––––––=23×33=63.
2197=13×13×13––––––––––––––=133.
Evaluate each of the following: (i)23−35(ii)−47−2−3(iii)47−−5−7(iv)−2−59(v)−3−8−−27(vi)−413−−526(vii)−514−−27(viii)1315−1225(ix)−613−−713(x)724−1936(xi)563−−821
Verify the following :
(i) 37×(56+1213)=(37×56)+(37×1213) (ii) −154×(37+−125)=(−154×37)+(−154×−125) (iii) (−83+−1312)×56=(−83×56)+(−1312×56) (iv) −167×(−89+−76)=(−167×−89)+(−167×−76)
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2