The correct option is C 932
Let S=∑∞m=1∑∞n=1m2n3m(n.3m+m.3n)
=∑∞m=1∑∞n=11(3mm)(3mm+3nn)
S=∑∞m=1∑∞n=11am(am+an)⋯(1)
(Let am=3mmandan=3nn)
By interchanging m and n, then
S=∑∞m=1∑∞n=11an(an+am)⋯(2)
Adding (1) and (2), then
2S=∑∞m=1∑∞n=11aman
=∑∞m=1∑∞n=1mn3m+n=(∞∑n=1n3n)2
=(34)2
=916
⇒S=932
Hence, option 'B' is correct.