wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate nr=1[rk=1k][log1/2(4xx2)]r. Find x for which summation is a finite number as n

A
x(0,2+152)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x(0,2152)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x(0,2+152)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x(0,2152)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A x(0,2+152)
We have,
nr=1[rk=1k][log1/2(4xx2)]r
=nr=1r(r+1)2[log1/2(4xx2)]r
=nr=1r(r+1)2Ar [where A=log1/2(4xx2)]
=12nr=1r(r+1)Ar
=12[(1.2)A+(2.3)A2+(3.4)A3+....+n(n+1)An]
S=12S1 (say) (1)
S1=(1.2)A+(2.3)A2+(3.4)A3+....+(n1)nAn1+n(n+1)An
S1=2A+6A2+12A3+.....+(n1)nAn1+n(n+1)An
AS1=0+2A2+6A3+....+(n1)nAn+n(n+1)An+1
Subtracting, we get,
(1A)S1=2A+4A2+6A3+....+2nAnn(n+1)An+1
(1A)S1=2[A+2A2+3A3+...+nAn]n(n+1)An+1
=2S2n(n+1)An+1 (say) (2)
S2=A+2A2+3A3+....+(n1)An1+nAn
from (2),
(1A)S1=2A(1An)(1A)22nAn+1(1A)n(n+1)An+1
S1=2A(1An)(1A)32nAn+1(1A)2n(n+1)An+1(1A)
now from (1),
S=12S1
S=A(1An)(1A)3nAn+1(1A)2n(n+1)An+12(1A)
Now, for S to be finite we must have |A|<1
S=A(10)(1A)300
=A(1A)3=log1/2(4xx2)(1log1/2(4xx2))3=finite
(A<1)
i.e log1/2(4xx2)<1
4xx2>12
4xx2>14
4x216x+1<0
2152<x<2+152(3)
and 4xx2>0
x24x<0
x(x4)<0
0<x<4(4)
combining (3) and (4) we get
x(0,2+152)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon