The correct option is A x∈(0,2+√152)
We have,
∑nr=1[∑rk=1k][log1/2√(4x−x2)]r
=∑nr=1r(r+1)2[log1/2√(4x−x2)]r
=∑nr=1r(r+1)2Ar [where A=log1/2√(4x−x2)]
=12n∑r=1r(r+1)Ar
=12[(1.2)A+(2.3)A2+(3.4)A3+....+n(n+1)An]
S=12S1 (say) ⋯(1)
∴S1=(1.2)A+(2.3)A2+(3.4)A3+....+(n−1)nAn−1+n(n+1)An
⇒S1=2A+6A2+12A3+.....+(n−1)nAn−1+n(n+1)An
∴AS1=0+2A2+6A3+....+(n−1)nAn+n(n+1)An+1
Subtracting, we get,
(1−A)S1=2A+4A2+6A3+....+2nAn−n(n+1)An+1
⇒(1−A)S1=2[A+2A2+3A3+...+nAn]−n(n+1)An+1
=2S2−n(n+1)An+1 (say) ⋯(2)
∴S2=A+2A2+3A3+....+(n−1)An−1+nAn
from (2),
(1−A)S1=2A(1−An)(1−A)2−2nAn+1(1−A)−n(n+1)An+1
∴S1=2A(1−An)(1−A)3−2nAn+1(1−A)2−n(n+1)An+1(1−A)
now from (1),
S=12S1
∴S=A(1−An)(1−A)3−nAn+1(1−A)2−n(n+1)An+12(1−A)
Now, for S to be finite we must have |A|<1
S∞=A(1−0)(1−A)3−0−0
=A(1−A)3=log1/2√(4x−x2)(1−log1/2√(4x−x2))3=finite
(∵A<1)
i.e log1/2√(4x−x2)<1
⇒√4x−x2>12
⇒4x−x2>14
⇒4x2−16x+1<0
∴2−√152<x<2+√152⋯(3)
and 4x−x2>0
⇒x2−4x<0
⇒x(x−4)<0
∴0<x<4⋯(4)
combining (3) and (4) we get
x∈(0,2+√152)