tan−1√(1−sin4x)(1+sin4x)
=tan−1√(sin22x+cos22x−2sin2xcos2x)(sin22x+cos22x+2sin2xcos2x)
=tan−1 ⎷(sin2x−cos2x)2(sin2x+cos2x)2
=tan−1(sin2x−cos2x)(sin2x+cos2x)
Divide numerator and denominator cos2x and we get,
=tan−1(sin2x−cos2xcos2x)(sin2x+cos2xcos2x)
=tan−1(tan2x−1tan2x+1)
=tan−1(tan2x−tan450tan2x+1)
=tan−1(tan2x−tan4501+1×tan2x)
=tan−1(tan2x−tan4501+tan450tan2x)
=tan−1tan(2x−450)
=2x−450or2x−π4
Hence, this is the solution.