wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: tan2π16+tan22π16+tan23π16++tan27π16

Open in App
Solution

7π16=π2π16
6π16=π22π16
5π16=π22π16
4π16=π4
tan2π16+tan22π16+tan23π16+.....tan26π16+tan27π16
tan2π16+tan22π16+tan23π16+...+tan2(π32π16)+tan2(π2π16)
tan2π16+tan22π16tan23π16+.....+cot22π16+cot2π16
(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan24π16
Solve first bracket
(tan2π16+cot2π16)=(tanπ16+cotπ16)22tanπ16cotπ16
=(sinπ/16cosπ/16+cosπ/16sinπ/16)22
=(t×22sin(π/16)cos(π/16))22
=(2sinπ/8)22
=4×22sin2π/82
=8(1cosπ/4)2
=8(112)2
=82(21)2
82(2+1)2
Similarly 2nd bracket=8(1cosπ2)2=82=6
& similarly 3rd bracket=8(1cos3π/4)2=82(21)2
Thus, equation (1)
82(2+1)2+6+1+82(212=
16+822+7+82×2822=
35.

1188977_1291735_ans_74f1216f6a394fd184b7d4edda77ec64.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon