7π16=π2−π16
6π16=π2−2π16
5π16=π2−2π16
4π16=π4
⇒tan2π16+tan22π16+tan23π16+...…..tan26π16+tan27π16
⇒tan2π16+tan22π16+tan23π16+...…+tan2(π3−2π16)+tan2(π2−π16)
⇒tan2π16+tan22π16tan23π16+...…..+cot22π16+cot2π16
⇒(tan2π16+cot2π16)+(tan22π16+cot22π16)+(tan23π16+cot23π16)+tan24π16
Solve first bracket
(tan2π16+cot2π16)=(tanπ16+cotπ16)2−2tanπ16cotπ16
=(sinπ/16cosπ/16+cosπ/16sinπ/16)2−2
=(t×22sin(π/16)cos(π/16))2−2
=(2sinπ/8)2−2
=4×22sin2π/8−2
=8(1−cosπ/4)−2
=8(1−1√2)−2
=8√2(√2−1)−2
⇒8√2(√2+1)−2
Similarly 2nd bracket=8(1−cosπ2)−2=8−2=6
& similarly 3rd bracket=8(1−cos3π/4)−2=8√2(√2−1)−2
Thus, equation (1)
⇒8√2(√2+1)−2+6+1+8√2(√2−1−2=
⇒16+8√2−2+7+8√2×√2−8√2−2=
⇒35.