tan[2tan−1(15)−π4]
We know that tan(A−B)=tanA−tanB1+tanAtanB
=tan2tan−1(15)−tanπ41+tan2tan−1(15)tanπ4
=tan2tan−1(15)−11+tan2tan−1(15)
We know that 2tan−1x=tan−1(2x1−x2)
Replace x by 15
⇒2tan−115=tan−1⎛⎜
⎜
⎜
⎜
⎜⎝2×151−(15)2⎞⎟
⎟
⎟
⎟
⎟⎠
⇒2tan−115=tan−1⎛⎜
⎜
⎜⎝251−125⎞⎟
⎟
⎟⎠
⇒2tan−115=tan−1⎛⎜
⎜
⎜⎝2525−125⎞⎟
⎟
⎟⎠
⇒2tan−115=tan−1⎛⎜
⎜
⎜⎝252425⎞⎟
⎟
⎟⎠
⇒2tan−115=tan−1(224)
∴2tan−115=tan−1(112)
Substituting 2tan−115=tan−1(112) in
tan2tan−1(15)−11+tan2tan−1(15) we get
⇒tantan−1(112)−11+tantan−1(112)
=112−11+112
=1−121212+112
=−1113