∫32x2 dx
∫baf(x)dx
=(b−a)limn→∞1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)]
Putting a=2 and b=3
h=b−an=3−2n=1n
f(x)=x3
∫32 x2dx
=(3−2)limn→∞1n[f(2)+f(2+h)+f(2+2h)+...+f(2+(n−1)n)]
=limn→∞1n[f(2)+f(2+h)+f(2+2h)+...+f(2+(n−1)h)]
=limn→∞1n[(2)2+(2+h)2+(2+2h)2+...+(2+(n−1)h)2]
=limn→∞1n(22+(22+h2+4h)+(22+4h2+8h)+...+(22+((n−1)h)2+4(n−1)h))
=limn→∞1n[[22+22+...+22]+[h2+22h2+...+(n−1)2h2]+[4h+8h+...+4(n−1)h]
=limn→∞1n[4n+h2(n−1)(n)(2n−1)6+4h(n−1)(n)2]
[∵12+22+...n2=n(n+1)(2n+1)6&1+2+3+...+n=n(n+1)2]
=limn→∞n[4n+(1n)2(n−1)(n)(2n−1)6+(1n)4(n−1)(n)2] [∵h=1n]
=limn→∞[4nn+(n−1)(n)(2n−1)6n3+2(n−1)(n)n2]
=limn→∞⎡⎢
⎢
⎢
⎢⎣4+(1−1n)(2−1n)6+2(1−1n)1⎤⎥
⎥
⎥
⎥⎦
=4+(1−0)(2−0)6+2(1−0)1
=4+13+2
=193