wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral as limit of sums:
30 x2 dx

Open in App
Solution

32x2 dx

baf(x)dx

=(ba)limn1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)]

Putting a=2 and b=3

h=ban=32n=1n

f(x)=x3

32 x2dx

=(32)limn1n[f(2)+f(2+h)+f(2+2h)+...+f(2+(n1)n)]

=limn1n[f(2)+f(2+h)+f(2+2h)+...+f(2+(n1)h)]

=limn1n[(2)2+(2+h)2+(2+2h)2+...+(2+(n1)h)2]

=limn1n(22+(22+h2+4h)+(22+4h2+8h)+...+(22+((n1)h)2+4(n1)h))

=limn1n[[22+22+...+22]+[h2+22h2+...+(n1)2h2]+[4h+8h+...+4(n1)h]

=limn1n[4n+h2(n1)(n)(2n1)6+4h(n1)(n)2]

[12+22+...n2=n(n+1)(2n+1)6&1+2+3+...+n=n(n+1)2]

=limnn[4n+(1n)2(n1)(n)(2n1)6+(1n)4(n1)(n)2] [h=1n]

=limn[4nn+(n1)(n)(2n1)6n3+2(n1)(n)n2]

=limn⎢ ⎢ ⎢ ⎢4+(11n)(21n)6+2(11n)1⎥ ⎥ ⎥ ⎥

=4+(10)(20)6+2(10)1

=4+13+2

=193

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon