wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral as limit of sums:
50(x+1)dx

Open in App
Solution

50(x+1) dx

We know that

baf(x)dx

=(ba)limn1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)]

Putting a=0 and b=5

h=ban=50n=5n

f(x)=x+1

50 (x+1)dx

=(50)limn1n[f(0)+f(0+h)+f(0+2h)+...+f(0+(n1)h)]

=5limn1n[f(0)+f(h)+f(2h)+...+f((n1)h)]

=5limn1n(1+(h+1)+(2h+1)+..+(n1)h+1)

=5limn1n(1+1+1+...+1+h+2h+...+(n1)h)

=5limn1n[n+h(1+2+...+(n1))]

=5limn1n(n+h(n1)n2)

[1+2+3+...+n=n(n+1)2]

=5limn(nn+n(n1)h2n)

=5limn(1+n12.5n)

(Using h=5n)

=5limn[1+52(11n)]

=5[1+52(10)]

=5[72]

=352

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon