∫50(x+1) dx
We know that
∫baf(x)dx
=(b−a)limn→∞1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)]
Putting a=0 and b=5
h=b−an=5−0n=5n
f(x)=x+1
∴∫50 (x+1)dx
=(5−0)limn→∞1n[f(0)+f(0+h)+f(0+2h)+...+f(0+(n−1)h)]
=5limn→∞1n[f(0)+f(h)+f(2h)+...+f((n−1)h)]
=5limn→∞1n(1+(h+1)+(2h+1)+..+(n−1)h+1)
=5limn→∞1n(1+1+1+...+1+h+2h+...+(n−1)h)
=5limn→∞1n[n+h(1+2+...+(n−1))]
=5limn→∞1n(n+h(n−1)n2)
[∵1+2+3+...+n=n(n+1)2]
=5limn→∞(nn+n(n−1)h2n)
=5limn→∞(1+n−12.5n)
(Using h=5n)
=5limn→∞[1+52(1−1n)]
=5[1+52(1−0)]
=5[72]
=352