∫bax dx
We know that
∫baf(x)dx
=(b−a)limn→∞1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)]
Putting a=a and b=b
h=b−an
f(x)=x
Hence, we can write
∫ba f(x)dx
=(b−a)limn→∞1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n−1)h)]
=(b−a)limn→∞1n[a+a+...+a+h+2h+...+(n−1)h]
=(b−a)limn→∞1n[na+h(1+2+...+(n−1))]
=(b−a)limn→∞1n[na+h((n−1)(n)2)]
[∵1+2+3+...+n=n(n+1)2]
=(b−a)limn→∞[nan+h.n(n−1)2n]
=(b−a)limn→∞(a+(n−1)h2)
=(b−a)limn→∞[a+(n−1)2(b−an)]
[∵h=b−an]
=(b−a)limn→∞[a+(1−1n)(b−a2)]
=(b−a)(a+b−a2)
=(b−a)(b+a)2
=(b−a)(a+b−a2)
=(b−a)(b+a)2
=b2−a22