wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral as limit of sums:
ba x dx

Open in App
Solution

bax dx

We know that

baf(x)dx

=(ba)limn1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)]

Putting a=a and b=b

h=ban

f(x)=x

Hence, we can write

ba f(x)dx

=(ba)limn1n[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)]

=(ba)limn1n[a+a+...+a+h+2h+...+(n1)h]

=(ba)limn1n[na+h(1+2+...+(n1))]

=(ba)limn1n[na+h((n1)(n)2)]

[1+2+3+...+n=n(n+1)2]

=(ba)limn[nan+h.n(n1)2n]

=(ba)limn(a+(n1)h2)

=(ba)limn[a+(n1)2(ban)]

[h=ban]

=(ba)limn[a+(11n)(ba2)]

=(ba)(a+ba2)

=(ba)(b+a)2

=(ba)(a+ba2)

=(ba)(b+a)2

=b2a22




flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon