Let I=∫206x+3x2+4dx
⇒∫6x+3x2+4dx=3∫2x+1x2+4dx
=3∫2xx2+4dx+3∫1x2+4dx
=3log(x2+4)+32tan−1x2=F(x)
By second fundamental theorem of calculus, we obtain
I=F(2)−F(0)
={3log(22+4)+32tan−1(22)}−{3log(0+4)+32tan−1(02)}
=3log8+32tan−11−3log4−32tan−10
=3log8+34(π4)−3log4−0
=3log(84)+3π8
=3log2+3π8