wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral
π20sin2xtan1(sinx)dx

Open in App
Solution

π20sin2xtan1(sinx)dx
=π202sinxcosxtan1(sinx)dx
Let sinx=t
Differentiating both sides w.r.t x
cosx=dtdx
dx=dtcosx
When x=0t=0
When x=π2t=1
Substituting x and dx
π202sinxcosxtan1(sinx)dx
=102tcosxtan1(sinx)dtcosx
=102ttan1(t)dt
We know that f(x)g(x)dx=f(x)g(x)dx(ddx(f(x))g(x))dx
Putting f(x)=tan1t and g(x)=t
=2(tan1ttdt(ddttan1t)tdtdt)
=2(tan1t(t22)11+t2×t22dt)
=2(t22tan1t12t22dt)
=t2tan1tt21+t2dt
Let I1=t2dt1+t2
=(t2+11)dt1+t2
=dtdt1+t2
=ttan1t
Thus, our equation becomes
tan1t×tdt=t2tan1tI1
=t2tan1t(ttan1t)
=t2tan1tt+tan1t
=F(x)
210t×tan1tdt=F(1)F(0)
=(1×tan111+tan11)(0+tan10)
=π41+π4(00+0)
=π21

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon