wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral π20sin2xtan1(sinx)dx

Open in App
Solution

Let I=π20sin2xtan1(sinx)dx=π202sinxcosxtan1(sinx)dx
Also, let sinx=tcosxdx=dt
When x=0,t=0 and when x=π2,t=1
I=210tan1(t)dt ............ (1)
Consider ttan1tdt=tan1ttdt{ddt(tan1t)tdt}dt
=tan1tt2211+t2t22dt
=t2tan1t212t2+111+t2dt
=t2tan1t2121dt+1211+t2dt
=t2tan1t212t+12tan1t
10ttan1tdt=[t2tan1t2t2+12tan1t]10
=12[π41+π4]
=12[π21]=π412
From equation (1), we obtain
I=2[π412]=π21

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon