Let I=∫π40sinx+cosx9+16sin2xdx
Also, let sinx−cosx=t⇒(cosx+sinx)dx=dt
When x=0,t=−1 and when x=π4,t=0
⇒(sinx−cosx)2=t2
⇒sin2x+cos2x−2sinxcosx=t2
⇒1−sin2x=t2
⇒sin2x=1−t2
∴I=∫0−1dt9+16(1−t2)
=∫0−1dt9+16−16t2
=∫0−1dt25−16t2=∫0−1dt(5)2−(4t)2
=14[12(5)log∣∣∣5+4t5−4t∣∣∣]0−1
=140[log(1)−log∣∣∣19∣∣∣]
=140log9