Evaluate the definite integral ∫π40sinxcosxcos4x+sin4xdx
Open in App
Solution
Let I=∫π40sinxcosxcos4x+sin4xdx ⇒I=∫π40(sinxcosx)cos4x(cos4x+sin4x)cos4xdx ⇒I=∫π40tanxsec2x1+tan4xdx Let tan2x=t⇒2tanxsec2xdx=dt When x=0,t=0 and when x=π4,t=1 ∴I=12∫10dt1+t2 =12[tan−1t]10 =12[tan−11−tan−10] =12[π4]=π8