wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral π0xtanxsecx+tanxdx

Open in App
Solution

Let I=π0xtanxsecx+tanxdx .............. (1)
I=π0{(πx)tan(πx)sec(πx)+tan(πx)}dx,(a0f(x)dx=a0f(ax)dx)
I=π0{(πx)tanx(secx+tanx)}dx
I=π0(πx)tanxsecx+tanxdx ............. (2)
Adding (1) and (2), we obtain
2I=π0πtanxsecx+tanxdx
2I=ππ0sinxcosx1cosx+sinxcosxdx
2I=ππ0sinx+111+sinxdx
2I=ππ01dxππ011+sinxdx
2I=π[x]π0ππ01sinxcos2xdx
2I=π2ππ0(sec2xtanxsecx)dx
2I=π2π[tanxsecx]π0
2I=π2π[tanπsecπtan0+sec0]
2I=π2π[0(1)0+1]
2I=π22π
2I=π(π2)
I=π2(π2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon