wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral 215x2x2+4x+3

Open in App
Solution

Let I=215x2x2+4x+3
Since, degree of numerator is equal to degree of denominator, so dividing 5x2 by x2+4x+3

I=21{520x+15x2+4x+3}dx

=215dx2120x+15x2+4x+3dx

=[5x]212120x+15x2+4x+3dx

I=5I1 ........... (1)
where I1=2120x+15x2+4x+3dx

Consider I1=2120x+15x2+4x+3dx
Let 20x+15=Addx(x2+4x+3)+B
20x+15=A(2x+4)+B ....(2)
=2Ax+(4A+B)
Equating the coefficients of x and constant term, we obtain
A=10 and B=25
Substituting these values in (2),
20x+15=10(2x+4)25
I1=10212x+4x2+4x+3dx2521dxx2+4x+3
Let x2+4x+3=t
x2+4x+3=t
(2x+4)dx=dt

I1=10158dtt2521dx(x+2)212

=10[logt]15825[12log(x+21x+2+1)]21

=10[log15log8]25[12log(x+1x+3)]21

=[10log1510log8]25[12log3512log24]

=[10log(5×3)10log(4×2)]252[log3log5log2+log4]

=[10log5+10log310log410log2252[log3log5log2+log4]

=[10+252]log5+[10252]log4+[10252]log3+[10+252]log2

=452log5452log452log3+52log2

=452log5452log32

Substituting the value of I1 in (1), we get
I=5[452log5452log32]

=552[9log54log32]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon