Let I=∫215x2x2+4x+3Since, degree of numerator is equal to degree of denominator, so dividing 5x2 by x2+4x+3
I=∫21{5−20x+15x2+4x+3}dx
=∫215dx−∫2120x+15x2+4x+3dx
=[5x]21−∫2120x+15x2+4x+3dx
I=5−I1 ........... (1)
where I1=∫2120x+15x2+4x+3dx
Consider I1=∫2120x+15x2+4x+3dx
Let 20x+15=Addx(x2+4x+3)+B
⇒20x+15=A(2x+4)+B ....(2)
=2Ax+(4A+B)
Equating the coefficients of x and constant term, we obtain
A=10 and B=−25
Substituting these values in (2),
20x+15=10(2x+4)−25
⇒I1=10∫212x+4x2+4x+3dx−25∫21dxx2+4x+3
Let x2+4x+3=t
⇒x2+4x+3=t
⇒(2x+4)dx=dt
⇒I1=10∫158dtt−25∫21dx(x+2)2−12
=10[logt]158−25[12log(x+2−1x+2+1)]21
=10[log15−log8]−25[12log(x+1x+3)]21
=[10log15−10log8]−25[12log35−12log24]
=[10log(5×3)−10log(4×2)]−252[log3−log5−log2+log4]
=[10log5+10log3−10log4−10log2−252[log3−log5−log2+log4]
=[10+252]log5+[−10−252]log4+[10−252]log3+[−10+252]log2
=452log5−452log4−52log3+52log2
=452log54−52log32
Substituting the value of I1 in (1), we get
I=5−[452log54−52log32]
=5−52[9log54−log32]