Let I=∫π3π6sinx+cosx√sin2xdx
⇒I=∫π3π6(sinx+cosx)√−(−sin2x)dx
⇒I=∫π3π6sinx+cosx√−(−1+1−2sinxcosx)dx
⇒I=∫π3π6(sinx+cosx)√1−(sin2x+cos2x−2sinxcosx)dx
⇒I=∫π3π6(sinx+cosx)dx√1−(sinx−cosx)2
Let (sinx−cosx)=t⇒(sinx+cosx)dx=dt
when
x=π6,t=(1−√32) and when
x=π3,t=(√3−12)
I=∫√3−121−√33dt√1−t2
⇒I=∫√3−11−(√3−12)dt√1−t2
As
1√1−(−t)2=1√1−t2,
therefore, 1√1−t2 is an even function.
It is known that if f(x) is an even function, then ∫a−af(x)dx=2∫a0f(x)dx
⇒I=2∫√3−120dt√1−t2
=[2sin−1t]√3−120
=2sin−1(√3−12)