wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integral π3π6sinx+cosxsin2xdx

Open in App
Solution

Let I=π3π6sinx+cosxsin2xdx
I=π3π6(sinx+cosx)(sin2x)dx
I=π3π6sinx+cosx(1+12sinxcosx)dx
I=π3π6(sinx+cosx)1(sin2x+cos2x2sinxcosx)dx
I=π3π6(sinx+cosx)dx1(sinxcosx)2
Let (sinxcosx)=t(sinx+cosx)dx=dt
when x=π6,t=(132) and when x=π3,t=(312)
I=312133dt1t2
I=311(312)dt1t2
As 11(t)2=11t2, therefore, 11t2 is an even function.
It is known that if f(x) is an even function, then aaf(x)dx=2a0f(x)dx
I=23120dt1t2
=[2sin1t]3120
=2sin1(312)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon