Evaluate the definite integrals. ∫1011+x2dx.
∫1011+x2dx=[tan−1x]10(∵∫d1+x2=tan−1x)=tan−11−tan−10=π4
Evaluate the definite integrals. ∫101√1−x2dx.
Evaluate the definite integrals. ∫101√1+x−√xdx.