wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integrals.
102x+3(5x2+1)dx.

Open in App
Solution

Let I=102x+3(5x2+1)dx=102x(5x2+1)dx+3101(5x2+1)dx
Put 5x2+1=t10x=dtdxdx=dt10x
I=102xtdt10x+35101x2+(15)2dx=15101tdt+35101x2+(15)2dx=15[logt]10+35×115[tan1x15]10(dxa2+x2=1atan1xa)=15[log|5x2+1|]10+355[tan15x]10=15[log|5+1|log|0+1|]+35[tan15(1)tan15(0)]=15log6+35tan15(log1=0 and tan1(0)=0)


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration as Anti-Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon