Evaluate the definite integrals.
∫102x+3(5x2+1)dx.
Let I=∫102x+3(5x2+1)dx=∫102x(5x2+1)dx+3∫101(5x2+1)dx
Put 5x2+1=t⇒10x=dtdx⇒dx=dt10x
∴I=∫102xtdt10x+35∫101x2+(1√5)2dx=15∫101tdt+35∫101x2+(1√5)2dx=15[logt]10+35×11√5[tan−1x1√5]10(∵∫dxa2+x2=1atan−1xa)=15[log|5x2+1|]10+35√5[tan−1√5x]10=15[log|5+1|−log|0+1|]+3√5[tan−1√5(1)−tan−1√5(0)]=15log6+3√5tan−1√5(∵log1=0 and tan−1(0)=0)