Evaluate the definite integrals. ∫10xex2dx.
Let I=∫10xex2dx Put x2=t⇒2x=dtdx⇒dx=dt2x Limits when x=0⇒t=0 and when x =1⇒t=1 ∴I=∫10xetdt2x=12∫10etdt=12[et]10=12[e1−e0]=12[e−1]
Evaluate the definite integrals. ∫321xdx.
Evaluate the definite integrals. ∫1−1(x+1)dx.
Evaluate the definite integrals. ∫π40tanxdx.