Evaluate the definite integrals.
∫206x+3x2+4dx.
Let I=∫206x+3x2+4dx=∫206xx2+4dx+∫203x2+4dx
Put x2+4=t⇒2x=dtdx⇒dx=dt2x
Lower limit, when x =0, t =0 +4 =4
upper limit, when x =2, t =4+4 =8
∴I=∫846xtdt2x+∫203x2+4dx=3∫841tdt+3∫201x2+22dx=3[logt]84+32[tan−1x2]20[∵∫dxa+x2=1atan−1xa]=3[log(8)−log(4)+32][tan−122]=3log(84)+32×π4 [∵logb−loga=logba]=3log2+3π8