Evaluate the definite integrals. ∫π20cos2xdx.
∫π20cos2xdx=[sin2x2]π20(∵∫cosaxdx=sinaxa)=12[sin2x]π20=12[(sin2×π2)−sin(0)]=12[0−0]=0
Evaluate the definite integrals. ∫π40sin2xdx.