wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integrals.
π20cos2 xcos2 x+4sin2 xdx.

Open in App
Solution

Let I=π20cos2 xcos2 x+4sin2 x=π20cos2x43cos2xdx [sin2x=1cos2x]=13π2043cos2x443cos2xdx=13π20(1443cos2 x)dx=13[x]π20+43π20sec24sec2 x3dx
(Divide numerator and dinominator in second integral by cos2x)
=π6+43π20sec2 x4(1+tan2x)3 [1+tan2x=sec2x]Put tanx=tsec2 dx=dtWhen,x=0t=0 and when x=(π2)t=I=π6+43×140dtt2+(12)2=π6+13.2[tan1t12]0(dxa2+x2=1atan1xa)=π6+23[tan12t]0=π6+23[tan1tan10]=π6+23(π20)=π6+π3=π6


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon