Evaluate the definite integrals.
∫π20cos2 xcos2 x+4sin2 xdx.
Let I=∫π20cos2 xcos2 x+4sin2 x=∫π20cos2x4−3cos2xdx [∵sin2x=1−cos2x]=−13∫π204−3cos2x−44−3cos2xdx=−13∫π20(1−44−3cos2 x)dx=−13[x]π20+43∫π20sec24sec2 x−3dx
(Divide numerator and dinominator in second integral by cos2x)
=−π6+43∫π20sec2 x4(1+tan2x)−3 [∵1+tan2x=sec2x]Put tanx=t⇒sec2 dx=dtWhen,x=0⇒t=0 and when x=(π2)⇒t=∞∴I=−π6+43×14∫∞0dtt2+(12)2=−π6+13.2[tan−1t12]∞0(∵∫dxa2+x2=1atan−1xa)=−π6+23[tan−12t]∞0=−π6+23[tan−1∞−tan−10]=−π6+23(π2−0)=−π6+π3=π6