wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integrals.
π40sin x+cos x9+16sin 2xdx.

Open in App
Solution

I=π40sin x+Cos x9+16sin 2xdx.
We know that (sin xcos x)2=sin2x+cos2x2sinx cosx
(sin xcos x)2=1sin 2x[ sin2x + cos2x = 1 and 2 sin x cos x = sin 2x]sin2x=1(sinxcosx)2Put sin x - cos x=tcosx+sinx=dtdxdx=dtcosx+sinxWhen x=0,t=0cos0=1,X=π4,t=sinπ4cosπ4=0I=01sinx+cosx9+16(1t2)dtcosx+sinx=0119+16(1t2)dt=116.12.54[log54+t54t]01(1a2x2dx=12aloga+xax)=140[log5+4t54t]01=140(log1log19)=140[log1(log1log9)]=140log9[log(mn)=logmlogn]


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon