Evaluate the definite integrals.
∫π40sin x+cos x9+16sin 2xdx.
I=∫π40sin x+Cos x9+16sin 2xdx.
We know that (sin x−cos x)2=sin2x+cos2x−2sinx cosx
⇒(sin x−cos x)2=1−sin 2x[∵ sin2x + cos2x = 1 and 2 sin x cos x = sin 2x]⇒sin2x=1−(sinx−cosx)2Put sin x - cos x=t⇒cosx+sinx=dtdx⇒dx=dtcosx+sinxWhen x=0,t=0−cos0=−1,X=π4,t=sinπ4−cosπ4=0∴I=∫0−1sinx+cosx9+16(1−t2)dtcosx+sinx=∫0−119+16(1−t2)dt=116.12.54[log∣∣∣54+t54−t∣∣∣]0−1(∵∫1a2−x2dx=12alog∣∣a+xa−x∣∣)=140[log∣∣5+4t5−4t∣∣]0−1=140(log1−log19)=140[log1−(log1−log9)]=140log9[∵log(mn)=logm−logn]