Evaluate the definite integrals.
∫π40sin x cos xcos4 x+sin4 xdx
Let I=∫π40sin x cos xcos4 x+sin4 xdx=∫π40sin x cos x(1−sin2 x)+(sin2 x)2[∵cos2x=1−sin2x]
Put sin2x=t→2sinx cosxdx=dt
for limit when x=0⇒t=0 and when x=π4⇒t=12∴I=∫120sin x cos x(1−t)2+t22sin x cos xdt12∫1201(1−t)2+t2dt=12∫12012t2−2t+1dt=12.12∫1201t2−t+12dt=14∫1201t2−t+(12)2−(12)2+12dt=14∫1201(t−12)2+(12)2dt=14.112[tan−1(t−1212)]120=12[tan−10−tan−1(−1)]=12.π4=π8