wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the definite integrals.
π40sin x cos xcos4 x+sin4 xdx

Open in App
Solution

Let I=π40sin x cos xcos4 x+sin4 xdx=π40sin x cos x(1sin2 x)+(sin2 x)2[cos2x=1sin2x]
Put sin2x=t2sinx cosxdx=dt
for limit when x=0t=0 and when x=π4t=12I=120sin x cos x(1t)2+t22sin x cos xdt121201(1t)2+t2dt=1212012t22t+1dt=12.121201t2t+12dt=141201t2t+(12)2(12)2+12dt=141201(t12)2+(12)2dt=14.112[tan1(t1212)]120=12[tan10tan1(1)]=12.π4=π8


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon