Evaluate the definite integrals.
∫π40sin2xdx.
Let I=∫π40sin2xdx=∫π402sinx cosxdx
[∵ sin 2x =2 sin x cos x]
Put sinx=t⇒cosx=dtdx⇒dx=dtcosx
Upper limit, at x=π4⇒t=sinπ4=1√2
Lower limit, at x=0⇒t =sin0=0
∴I=2∫1√20tcosxdtcosx=2∫1√20tdt=2[t22]1√20=(1√2)2=12
Note If we change the integral function by considerable another variable, then remember to change the limit or after integration change into the given variable and then apply the limit.