Evaluate the definite integrals. ∫π40tanxdx.
∫π40tanxdx=[−log|cosx|]π40=−log∣∣cosπ4∣∣−(−log|cos0|) =−log(1√2)+log1=−log2−12+0[∵log 1 =0 and log mn =n log m]=12log2
Evaluate the definite integrals. ∫π40sin2xdx.
Evaluate the definite integrals. ∫π20cos2xdx.