Evaluate the definite integrals. ∫π0(sin2x2−cos2x2)dx.
∫π0(sin2x2−cos2x2)dx=−∫π0(cos2x2−sin2x2)dx=−∫π0cosxdx [∵cos2x=cos2x−sin2x]=−[sinx]π0=−[sinπ−sin0]=0
Evaluate the definite integrals. ∫π20cos2 xcos2 x+4sin2 xdx.
Evaluate the definite integrals. ∫π40(2sec2x+x3+2)dx