Evaluate the definite integrals. ∫1−1(x+1)dx.
Let I=∫1−1(x+1)dx=[x22+x]1−1=[122+1]−[(−1)22−1] ⇒I=32+12=42=2
Evaluate the definite integrals. ∫321x2−1dx.
Evaluate the definite integrals. ∫32xx2+1dx.
Evaluate the definite integrals. ∫102x+3(5x2+1)dx.