Evaluate the definite integrals. ∫321x2−1dx.
∫321x2−1dx=[12log∣∣x−1x+1∣∣]32[∵∫dxx2−a2=12alog∣∣x−ax+a∣∣]=12log∣∣3−13+1∣∣−12log∣∣2−12+1∣∣=12log∣∣24∣∣−12log∣∣13∣∣=12[log(1)−log(2)−log(1)+log(3)][∵log(ab)=loga−logb]=12log(32)
Evaluate the definite integrals. ∫32xx2+1dx.
Evaluate the definite integrals. ∫1−1(x+1)dx.
Evaluate the definite integrals. ∫321xdx.
Evaluate the definite integrals. ∫102x+3(5x2+1)dx.