Evaluate the definite integrals. ∫32xx2+1dx.
Let I=∫32xx2+1dx Put x2+1=t⇒2x=dtdx⇒dx=dt2x ∴I=∫32xtdt2x=12∫321tdx=12[log|t|]32=12[log|x2+1|]32 (∵t=x2+1)=12[log|32+1|−log|22+1|]=12[log|10|−log|5|]=12log∣∣105∣∣=12log2(∵ log a −log b=logab)
Evaluate the definite integrals. ∫321x2−1dx.
Evaluate the definite integrals. ∫102x+3(5x2+1)dx.
Evaluate the definite integrals. ∫206x+3x2+4dx.
Evaluate the definite integrals. ∫215x2x2+4x+3dx
Evaluate the definite integrals. ∫1−1(x+1)dx.