Evaluate the definite integrals.
∫π3π6sin x+cos x√sin 2xdx
∫π3π6sin x+cos x√sin 2xdx
We know that (sin x−cos x)2=sin2x+cos2x−2 sin x cos x
⇒(sin x−cos x)2=1−sin 2x
⇒sin2x=1−(sin x−cos x)2
Put sin x - cos x = 1
⇒(cos x+sin x)dx=dt⇒dx=dtcos x+sin xfor limit when x =π6⇒t=sinπ6−cosπ6=12−√32When,x=π3,t=sinπ3=√32−12∴I=∫√3−121−√32sin x+cos x√1−t2dtcos x+sin x=∫√3−121−√32dt√1−t2
(From here we can solve it in two ways)
Ist method
I=∫√3−121−√321√1−t2dt=[sin−1t]√3−121−√32=[sin−1(√3−12)−sin−1{−(√3−12)}]=[sin−1(√3−12)+sin−1(√3−12)][∵sin−1(−θ)=−sin−1θ]=2sin−1(√3−12)
IInd method
∫√3−121−√321√1−t2dt=∫√3−12(−√3−12)1√t−t2dtAs1√1−(t)2=1√1−t2,therefore 1√1−t2 is an even function. and we know that if f(x) is an even function, then∫a−af(X)dx=2∫a0f(X)dx∴I=2∫√3−120dt√1−t2=[2sin−1t]√3−120=2sin−1(√3−12)