Evaluate the determinants..
∣∣ ∣∣3−1−200−13−50∣∣ ∣∣
∣∣ ∣∣3−4511−2231∣∣ ∣∣
∣∣ ∣∣012−10−3−230∣∣ ∣∣
∣∣ ∣∣2−1−202−13−50∣∣ ∣∣
Let A=∣∣
∣∣3−1−200−13−50∣∣
∣∣
It can be observed that in the second row, two entries are zero.
Thus, we expand the determinant along the second row for easier calculation.
|A|=−0∣∣∣−1−2−50∣∣∣+0∣∣∣3−230∣∣∣−(−1)∣∣∣3−13−5∣∣∣=(3×(−5)−3×(−1))=−15+3=−12
Let A=∣∣
∣∣3−4511−2231∣∣
∣∣
By expanding along R1 (first row), we get
|A|=3∣∣∣1−231∣∣∣−(−4)∣∣∣1−221∣∣∣+5∣∣∣1123∣∣∣=3(1+6)+4(1+4)+5(3−2)=3(7)+4(5)+5(1)=21+20+5=46
Let A=∣∣
∣∣012−10−3−230∣∣
∣∣
By expanding along R1 (first row), we get
|A|=0∣∣∣0−330∣∣∣−1∣∣∣−1−3−20∣∣∣+2∣∣∣−10−23∣∣∣=−1(0−6)+2(−3−0)=−1(−6)+2(−3)=6−6=0
Let A=∣∣
∣∣2−2−202−13−50∣∣
∣∣
By expanding along R2 (second row), we get
|A|=0∣∣∣−1−2−50∣∣∣−2∣∣∣2−230∣∣∣−(−1)∣∣∣2−13−5∣∣∣=0+2(0+6)+(−10+3)=12−7=5