Evaluate the determinants.
∣∣∣cosθ−sinθsinθcosθ∣∣∣
∣∣∣x2−x+1x−1x+1x+1∣∣∣
∣∣∣cosθ−sinθsinθcosθ∣∣∣=(cosθ)(cosθ)−(sinθ)(−sinθ)
=cos2θ+sin2θ=1 (∵sin2θ+cos2θ=1)
∣∣∣x2−x+1x−1x+1x+1∣∣∣=(x2−x+1)(x+1)−(x+1)(x−1)=x3−x2+x+x2−x+1−(x2−1)=x3+1(x2−1)=x3−x2+2