∫10(xex+sinπx4)dx
Let, F(x)=∫(xex+sinπx4)dx
∫xex dxdxI1+∫sin(πx4)I2
For I1:
∫xex dx
Using integration by parts
=x∫exdx−∫[(dxdx)∫ex dx]dx
=xex−∫exdx
=xex−ex
=ex(x−1)
For I2 :
∫sin(πx4)dx
=1π4(−cos(πx4))
=−4πcos(πx4)
Putting I1 and I2
F(x)=∫xexdx+∫sinπ4x dx
=ex(x−1)−4πcos(πx4)
Now,
∫10(xex+sinπx4)dx
=F(1)−F(0)
=(e1(1−1)−π4cos(π×14))−(e0(0−1)+4πcos(π×04))
=0−4πcosπ4+1+4πcos 0
=−4π√2+1+4π
=1+4π(1−1√2)
=1+4−2√2π