wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the difinite integral: 206x+3x2+4dx

Open in App
Solution

206x+3x2+4dx
Let, F(x)=6x+3x2+4dx
=6xx2+4dxI1+3x2+4dxI2dx

For I1 :
I1=6xx2+4dx
Put x2+4=t
Differentiating w.r.t. x
2xdx=dt
Therefore,
6xx2+4dx
=3tdt
=3log|t|=log|x2+4|

For I2:
I23x2+4dx
=31x2+4dx
=31x2+22dx
=3×12tan1x2
=32tan1x2
Therefore
F(x)=I1+I2
F(x)=3log|x2+4|+32tan1x2
Now,
206x+3x2+4dx=F(2)F(0)
(3 log|22+4|+32tan122)(3 log|0+4|32tan1(02))
=3 log 8+32×π43log 4
=3 log 2+3π8


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon