∫206x+3x2+4dx
Let, F(x)=6x+3x2+4dx
=∫6xx2+4dxI1+∫3x2+4dxI2dx
For I1 :
I1=∫6xx2+4dx
Put x2+4=t
Differentiating w.r.t. x
⇒2xdx=dt
Therefore,
∫6xx2+4dx
=∫3tdt
=3log|t|=log|x2+4|
For I2:
I2∫3x2+4dx
=3∫1x2+4dx
=3∫1x2+22dx
=3×12tan−1x2
=32tan−1x2
Therefore
F(x)=I1+I2
F(x)=3log|x2+4|+32tan−1x2
Now,
∫206x+3x2+4dx=F(2)−F(0)
(3 log|22+4|+32tan−122)−(3 log|0+4|−32tan−1(02))
=3 log 8+32×π4−3log 4
=3 log 2+3π8