The correct option is A 11.01
Let x=(17.42)2/3×18.42√126.37
Taking logarithm on both sides,
logx=log(17.42)2/3+log18.42−log√126.37
logx=23log17.42+log18.42−12log(126.37)
logx=23log(1.742×10)+log(1.842×10)−12log(1.264×102)
logx=23(1.2410)+1.2653−12(2.1018)
logx=0.8273+1.2653−1.0509
logx=1.0417
⇒x=antilog (1.0417)
⇒x=11.01