Evaluate the following definete integrals as limit of sums.
∫14(x2−x)dx.
We know that ∫baf(x)dx=limh→0h[f(a)+f(a+h)+f(a+2h)+....+f{a+(n−1)}h] where nh =b-a
Given, ∫41(x2−x)dx,here a=1,b=4 and nh=3 and f(x)=x2−x=x(x−1)
∴∫41(x2−x)dx=limh→0h[f(1)+f(1+h)+f(1+2h)+....+f(1+(n−1)h)]=limh→0h[1(1−1)+(1+h)h+(1+2h)(2h)+....+(1+(n−1)h){(n−1)h}][∵f(x)=x(x−1)]f(1)=1(1−1);f(1+h)=(1+h)(1+h−1)=(1+h)h and so on]
=limh→0h2[(1+h)+2(1+2h)+3(1+3h)+...+(n−1)(1+(n−1)h)]=limh→0h2[(1+2+3+...+(n−1))+{h+22h+32h+...+(n−1)2h}]=limh→0h2{(n−1)n2+h(12+22+....+(n−1)2)}[∵1+2+3+....(n−1)=∑(n−1)=n(n−1)2]=limh→0{(n−1)nh22+h3(n−1)n(2n−1)6}
{∵∑n2=n(n+1)(2n+1)6}∴∑(n−1)2=(n−1)n(2n−1)6=limh→0{(nh−h)(nh)2+(nh−h)(hn)(2nh−h)6}=limh→0{(3−h)32+(3−h)3(2×3−h)6}[∵nh=3]=92+3×3×66=92+9=272
Note While determine the value of definite integrals by the method of sum of a limits, this value can be checked by simple integration method, to avoid the any chance of error.