wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following definete integrals as limit of sums.
14(x2x)dx.

Open in App
Solution

We know that baf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+....+f{a+(n1)}h] where nh =b-a
Given, 41(x2x)dx,here a=1,b=4 and nh=3 and f(x)=x2x=x(x1)
41(x2x)dx=limh0h[f(1)+f(1+h)+f(1+2h)+....+f(1+(n1)h)]=limh0h[1(11)+(1+h)h+(1+2h)(2h)+....+(1+(n1)h){(n1)h}][f(x)=x(x1)]f(1)=1(11);f(1+h)=(1+h)(1+h1)=(1+h)h and so on]
=limh0h2[(1+h)+2(1+2h)+3(1+3h)+...+(n1)(1+(n1)h)]=limh0h2[(1+2+3+...+(n1))+{h+22h+32h+...+(n1)2h}]=limh0h2{(n1)n2+h(12+22+....+(n1)2)}[1+2+3+....(n1)=(n1)=n(n1)2]=limh0{(n1)nh22+h3(n1)n(2n1)6}

{n2=n(n+1)(2n+1)6}(n1)2=(n1)n(2n1)6=limh0{(nhh)(nh)2+(nhh)(hn)(2nhh)6}=limh0{(3h)32+(3h)3(2×3h)6}[nh=3]=92+3×3×66=92+9=272

Note While determine the value of definite integrals by the method of sum of a limits, this value can be checked by simple integration method, to avoid the any chance of error.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon