Consider, I=∫π/4−π/4log(cosx+sinx)dx
I=∫π4−π4log[√2sin(π4+x)]dx
let, π4+x=t ⇒ dx=dt
So, x→−π4⇒t→0 and x→π4⇒t→π2
⇒ I=∫π20log(√2sint)dt
⇒I=∫π20log(√2)+∫π20log(sint)dt
⇒I=π2log(√2)−π2log(2)
⇒I=π4log2−π2log(2)
⇒I=−π4log2