The correct option is
B e2−1eHere, the function f(x)=ex is continuous in [−1,1]. Since dividing the n length of [−1,1] in the same length, the length of each subser is h. i.e., h=b−an=1−(−1)n=2n⇒nh=2
here a=−1 & b=1
Now, f(a+ih)=f(−1+ih)=e−1+ih=e−1⋅eih=eihe
By definition, ∫1−1exdx=limh→0hn∑i=1f(a+ih)
So, ∫1−1exdx=limh→0hn∑i=1(eihe)
=limh→0he×[eh+e2h+e3h+......+enh]
Here we can see a geometric progression where a=eh & r=e2heh=eh, Sn=a(rn−1)r−1
So, =limh→0he×eh(enh−1)(eh−1) (here nh=2)
=e2−1elimh→0eh(eh−1h)
=e2−1e×e1
∫1−1exdx=e2−1e.