The correct option is
D 272Here, the function f(x)=x2−x is continuous in [1,4]. Since dividing the n length of [1,4] in the same lengthg, the length of each subset is h.
i.e., h=b−an=4−1n=3n, here a=1 & b=4
Now, f(a+ih)=f(1+ih)=(1+ih)2−(1+ih)
f(a+ih)=1+2ih+i2h2−1−ih
So, f(a+ih)=i2h2+ih
By definition, ∫41(x2−x)dx=limn→∞hn∑i=1f(a+ih)
So, ∫41(x2−x)dx=limn→∞(3n)n∑i=1(i2h2+ih)
=limn→∞(3n)[n∑i=1i2h2+n∑i=1ih]
=limn→∞(3n)(3n)2n∑i=1i2+limn→∞(3n)(3n)n∑i=1i
=limn→∞(3n)3(n)(n+1)(2n+1)6+limn→∞(3n)2(n)(n+1)2
=limn→∞[(3)36(n1n)(n+1n)(2n+1n)+(3)22(nn)(n+1n)]
=limn→∞[(276)(1)(1+1n)(2+1n)+92(1)(1+1n)]
∫41(x2−x)dx=276(1)(1+0)(2+0)+92(1)(1+0)=272.