The correct option is
C 352Here the function f(x)=x+1 is continuous in [0,5]. Since dividing the n length of [0,5] in the same length of each subset is h.
i.e., h=b−an=5−0n=5n, here a=0 & b=5
f(a+ih)=f(ih+0)=f(ih)=ih+1
By definition ∫50(x+1)dx=limn→∞hn∑i=1f(a+ih)
So, ∫50(x+1)dx=limn→∞(5n)n∑i=1(ih+1)
=limn→∞(5n)[hn∑i=1i+n∑i=11]
=limn→∞(5n)[(5n)(n(n+1)2)+(n)]
=limn→∞[252(nn)(n+1n)+5(nn)]
=limn→∞[252(1)(1+1n)+5(1)
=limn→∞252(1+1h)+limn→∞5
=252(1+0)+5
=252+5
∫50(x+1)dx=352.