wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following definite integrals as limit of sums.
40(x+e2x)dx.

Open in App
Solution

We know that baf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+.....+f{a+(n1)h}]
where, nh =b-a
Given,40(x+e2x)dx
Here, a=0, b=4 and nh =4
and f(x)=(x+e2x),f(0)=(0+e2(0))=1,
f(0+h)=h+e2h,f(0+2h)=2h+e4h,
and f(0+(n1)h)=(n1)h+e2(n1)h
40(x+e2x)dx=limh0h[1+(h+e2h)+(2h+e4h)+...+(n1)h+e2(n1)h]=limh0h[{h+2h+3h+...+(n1)}h+{1+e2h+e4h+...+e2(n1)h}]
=limh0h[h{1+2+3+...+(n1)}+{1+e2h+e4h+...+e2nh2h}]=limh0h{h(n1)n2+1((e2h)n1e2h1)}(n=n(n+1)2)
(1+e2h+e4h+...+e2(n1)h) is a GP series whose first term is 1 and common ratio r=e2h1=e2h
Sum =a(rn1)r1

=limh0{h2(n1)n2+h(e2nh1)e2h1}=limh0(nhh)(nh)2+limh0(e2)41e2h12h×2=limh0{(4h)42+e812}(limh0ex1x=1)=4×42+e812=(812)+e82=15+e82


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon