Evaluate the following definite integrals as limit of sums.
∫50(x+1)dx.
We know that ∫baf(x)dx=limh→0h[f(a)+f(a+h)+f(a+2h)+......+f((a+(n−1)h)], where nh=b-a
Here, a=0, b=5 and nh =5-0=5
and f(x)=(x+1)⇒f(0)=1
∴∫50(x+1)dx=limh→0h[1+(1+h)+(1+2h)+....+(1+(n−1)h)]
=limh→0h[n+hn(n−1)2](∵∑n=n(n+1)2)and∑1=n∴∑(n−1)=(n−1)n2=limh→0[nh+h2n(n−1)2]=limh→0[nh+(h2n2−h2n)2]=limh→0[hn+(hn−h)(hn)2] =limh→0[5+(5−h)(5)2][Here,nh=5]=5+5×52=352