wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following definite integrals as limit of sums.
50(x+1)dx.

Open in App
Solution

We know that baf(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+......+f((a+(n1)h)], where nh=b-a
Here, a=0, b=5 and nh =5-0=5
and f(x)=(x+1)f(0)=1
50(x+1)dx=limh0h[1+(1+h)+(1+2h)+....+(1+(n1)h)]

=limh0h[n+hn(n1)2](n=n(n+1)2)and1=n(n1)=(n1)n2=limh0[nh+h2n(n1)2]=limh0[nh+(h2n2h2n)2]=limh0[hn+(hnh)(hn)2] =limh0[5+(5h)(5)2][Here,nh=5]=5+5×52=352


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon