wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following definite integrals as limit of sums.
11exdx.

Open in App
Solution

We know that 11f(x)dx=limh0h[f(a)+f(a+h)+f(a+2h)+.....+f{a+(n1)h}]
where, nh =b -a
Given, 11exdx
Here, a=-1, b=1 and nh =b -a =2
and f(x)=ex,thenf(a)=f(1)=e1,f(1)f(1+h)=e(1+h)...f[(1+(n1)h)]=e(1+(n1)h)
11exdx=limh0h[e1+e(1+h)+e1+2h+....+e(1+(n1)h)]=limh0he1[1+eh+e2h+....+e(n1)h][a+ar+ar2+....+arn=a(rn1)(r1)]=limh0h3{(eh)n1}eh1=1elimh0ehn1eh1h(|eh|>1)
=1elimh0e21eh1h=1e(e211)(limh0ex1x=1and nh=2)=e21e=e1e


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon