Evaluate the following definite integrals as limit of sums.
∫1−1exdx.
We know that ∫1−1f(x)dx=limh→0h[f(a)+f(a+h)+f(a+2h)+.....+f{a+(n−1)h}]
where, nh =b -a
Given, ∫1−1exdx
Here, a=-1, b=1 and nh =b -a =2
and f(x)=ex,thenf(a)=f(1)=e−1,f(−1)f(−1+h)=e(−1+h)...f[(−1+(n−1)h)]=e(−1+(n−1)h)
∴∫1−1exdx=limh→0h[e−1+e(−1+h)+e−1+2h+....+e(−1+(n−1)h)]=limh→0he−1[1+eh+e2h+....+e(n−1)h][∵a+ar+ar2+....+arn=a(rn−1)(r−1)]=limh→0h3{(eh)n−1}eh−1=1elimh→0ehn−1eh−1h(∵|eh|>1)
=1elimh→0e2−1eh−1h=1e(e2−11)(∵limh→0ex−1x=1and nh=2)=e2−1e=e−1e