Evaluate the following definite integrals as limit of sums.
∫32x2dx.
We know that
∫baf(x)=limh→0h[f(a)+f(a+h)+f(a+2h)+...+f{a+(n−1)h}]
where, nh=b -a
Here and a=2, b=3 and nh=b -a=3-2=1
f(x)=x2,f(2)=22,f(2+h)=(2+h)2f(2+2h)=(2+2h)2,.....,f(2+(n−1)h)=(2+(n−1)h)2∴∫32x2dx=limh→0h[f(2)+f(2+h)+f(2+2h)+....+f(2+(n−1)h)]
=limh→0h[22+(2+h)2+(2+2h)2+...+(2+(n−1)h)2]=limh→0h[22+(22+h2+4h)+(22+22h2+8h)+...+(22+(n−1)2h2+4(n−1)h)][∴(a+b)2=a2+b2+2ab]=limh→0h[(22+22+...+n times)+h2(12+22+32)+....+(n−1)2+4h(1+2+...+(n−1))]=limh→0{4nh+h3(n−1)n(2n−1)6+4h2(n−1)n2}⎡⎢⎣∵∑n2=n(n+1)(2n+1)6∴∑(n−1)2=16(n−1)n(2n−1)and∑(n−1)=n(n−1)2⎤⎥⎦
=limh→0{4nh+(hn−h)hn(2nh−h)6+2(nh−h)(nh)}=limh→0{4×1+(1−h)1(2×1−h)6+2(1−h)1}[∴nh=1]=limh→0[4+(1−h)(2−h)6+2(1−h)]=4+26+2=6+13=193