wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the following definite integrals as limit of sums.
baxdx.

Open in App
Solution

We know that baf(x)dx=limh0h[f(a)+f(a+h)]+f(a+2h)+...+f[a+(n1)h]
where, nh=b-a
Here, a=a, b=b and f(x) =x
baxdx=limh0h[a+(a+h)+(a+2h)+...+a+(n1)h]=limh0h[(a+a+...+n times)+h(1+2+...(n1))](a=na)=limh0h[na+h(1+2+3+...+(n1))]=limh0[hna+h2n(n1)2](n=n(n+1)2(n1)=(n1)n2)=limh0[hna+h2n22h2n2]=limh0[(ba)a+12(ba)2(ba)2n2.n2][nh=ba]=[(ba)a+(ba)22][when h0,then nlim(ba)22n=0]=(ba)[a+ba2]=(ba)[2a+ba2]=(ba)[a+b2]=b2a22


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon