Evaluate the following definite integrals as limit of sums.
∫baxdx.
We know that ∫baf(x)dx=limh→0h[f(a)+f(a+h)]+f(a+2h)+...+f[a+(n−1)h]
where, nh=b-a
Here, a=a, b=b and f(x) =x
∴∫baxdx=limh→0h[a+(a+h)+(a+2h)+...+a+(n−1)h]=limh→0h[(a+a+...+n times)+h(1+2+...(n−1))]∵(∑a=na)=limh→0h[na+h(1+2+3+...+(n−1))]=limh→0[hna+h2n(n−1)2](∵∑n=n(n+1)2∴∑(n−1)=(n−1)n2)=limh→0[hna+h2n22−h2n2]=limh→0[(b−a)a+12(b−a)2−(b−a)2n2.n2][∴nh=b−a]=[(b−a)a+(b−a)22][∴when h→0,then n→∞∴lim(b−a)22n=0]=(b−a)[a+b−a2]=(b−a)[2a+b−a2]=(b−a)[a+b2]=b2−a22