Evaluate the following :∫32dxx2−x=
∫32dxx2−x
∫dx(x2−x)=∫dxx(x−1)=∫(x)−(x−1)x(x−1)dx
=∫(1x−1−1x)dx=∫1x−1dx−∫1xdx
=log(x−1)−log(x)
=log(x−1x)+c
∫32dxx2−x=[log(x−1x)]32
=(log(23))−(log(12))
=log⎛⎜ ⎜ ⎜⎝2312⎞⎟ ⎟ ⎟⎠=log(43)