Evaluate the following expression forx=-1,y=-2,z=3
xy+yz+zx
We have to find the value of xy+yz+zx
We have x=-1,y=-2,z=3
So, replacing x by-1, y by-2, and z by3, We have
xy+yz+zx=-1-2+-23+3-1=12+-23+-31=1×32×3+-2×23×2+-3×61×6=36+-46+-186=3-4-186=3-226=-196
Hence, the required value is -196
If x, y and z are variables, verify the cyclic symmetry of the following expressions.
(1) x(y + z) + y(z + x) + z(x + y)
(2) xy(x − y) + yz(y − z) + zx(z − x)
(3) x2y(x + y) + y2z(y + z) + z2x(z + x)
(4) x3(x + y) + y3(y + z) + z3(z + x)
(5) xy2(x − y) + yz2(y − z) + zx2(z − x)