Evaluate the following:
(i) sin78∘cos18∘−cos78∘sin18∘
(ii) cos47∘cos13∘−sin47∘sin13∘
(iii) sin36∘cos9∘+cos36∘sin9∘
(iv) cos80∘cos20∘+sin18∘sin20∘
(i) sin78∘cos18∘−cos78∘sin18∘
[sin(A−B)=sinAcosB−cosAsinB]
=sin(78∘−18∘)
=sin60∘
=√32
(ii) cos47∘cos13∘−sin47∘sin13∘
[cos(A+B)=sinAcosB+cosAsinB]
=sin(47∘+13∘)
=cos60∘
=12
(iii) sin36∘cos9∘+cos36∘sin9∘
[sin(A+B)=sinAcosB+cosAsinB]
=sin(36∘+9∘)
=sin45∘
=1√2
(iv) cos80∘cos20∘+sin18∘sin20∘
[cos(A−B)=cosAcosB+sinAsinB]
=sin(80∘−20∘)
=cos60∘
=12